Каталог заданий.
Площади
Версия для печати и копирования в MS Word
1
Задание № 97
i

Об­ра­зу­ю­щая ко­ну­са равна 26 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 60°. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.



2
Задание № 547
i

Об­ра­зу­ю­щая ко­ну­са равна 14 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 60°. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.



3
Задание № 577
i

Об­ра­зу­ю­щая ко­ну­са равна 32 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 60°. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.



4
Задание № 607
i

Об­ра­зу­ю­щая ко­ну­са равна 16 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 60°. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.



5
Задание № 637
i

Об­ра­зу­ю­щая ко­ну­са равна 34 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 60°. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.



6
Задание № 40
i

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 10. Пло­щадь его бо­ко­вой по­верх­но­сти равна:



7
Задание № 280
i

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 8. Пло­щадь его бо­ко­вой по­верх­но­сти равна:



8
Задание № 340
i

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 32. Пло­щадь его бо­ко­вой по­верх­но­сти равна:



9
Задание № 370
i

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 36. Пло­щадь его бо­ко­вой по­верх­но­сти равна:



10
Задание № 400
i

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 20. Пло­щадь его бо­ко­вой по­верх­но­сти равна:



11
Задание № 193
i

Объем ко­ну­са равен 5, а его вы­со­та равна  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.



12
Задание № 673
i

Объем ко­ну­са равен 9, а его вы­со­та равна  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.



13
Задание № 703
i

Объем ко­ну­са равен 7, а его вы­со­та равна  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.



14
Задание № 733
i

Объем ко­ну­са равен 4, а его вы­со­та равна  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.



15
Задание № 763
i

Объем ко­ну­са равен 10, а его вы­со­та равна  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.



16
Задание № 1951
i

Об­ра­зу­ю­щая ко­ну­са равна 17, а вы­со­та  — 8 . Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.



17
Задание № 2015
i

Об­ра­зу­ю­щая ко­ну­са равна 25, а вы­со­та  — 24. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.



18
Задание № 255
i

Точки A, B, C лежат на боль­шой окруж­но­сти сферы так, что тре­уголь­ник ABC  — рав­но­сто­рон­ний. Если AB  =  3 ко­рень из 6 , то пло­щадь сферы равна:



19
Задание № 915
i

Точки A, B, C лежат на боль­шой окруж­но­сти сферы так, что тре­уголь­ник ABC  — рав­но­сто­рон­ний. Если AB  =  5 ко­рень из 6 , то пло­щадь сферы равна:



20
Задание № 945
i

Точки A, B, C лежат на боль­шой окруж­но­сти сферы так, что тре­уголь­ник ABC  — рав­но­сто­рон­ний. Если AB  =  2 ко­рень из 3 , то пло­щадь сферы равна:



21
Задание № 975
i

Точки A, B, C лежат на боль­шой окруж­но­сти сферы так, что тре­уголь­ник ABC  — рав­но­сто­рон­ний. Если AB  =  6 ко­рень из 3 , то пло­щадь сферы равна:



22
Задание № 1005
i

Точки A, B, C лежат на боль­шой окруж­но­сти сферы так, что тре­уголь­ник ABC  — рав­но­сто­рон­ний. Если AB  =  5 ко­рень из 3 , то пло­щадь сферы равна:



23
Задание № 16
i

Плос­кость, уда­лен­ная от цен­тра сферы на 8 см, пе­ре­се­ка­ет ее по окруж­но­сти дли­ной 12π см. Най­ди­те пло­щадь сферы.



24

ABCDA1B1C1D1  — пря­мо­уголь­ный па­рал­ле­ле­пи­пед такой, что AB=12, AD=3. Через се­ре­ди­ны ребер AA1 и BB1 про­ве­де­на плос­кость (см.рис.), со­став­ля­ю­щая угол 60° с плос­ко­стью ос­но­ва­ния ABCD. Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да этой плос­ко­стью.



25
Задание № 556
i

ABCDA1B1C1D1  — пря­мо­уголь­ный па­рал­ле­ле­пи­пед такой, что AB = 16, AD = 4. Через се­ре­ди­ны ребер AA1 и BB1 про­ве­де­на плос­кость (см.рис.), со­став­ля­ю­щая угол 60° с плос­ко­стью ос­но­ва­ния ABCD. Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да этой плос­ко­стью.



26
Задание № 586
i

ABCDA1B1C1D1  — пря­мо­уголь­ный па­рал­ле­ле­пи­пед такой, что AB = 16, AD = 2. Через се­ре­ди­ны ребер AA1 и BB1 про­ве­де­на плос­кость (см.рис.), со­став­ля­ю­щая угол 60° с плос­ко­стью ос­но­ва­ния ABCD. Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да этой плос­ко­стью.



27
Задание № 616
i

ABCDA1B1C1D1  — пря­мо­уголь­ный па­рал­ле­ле­пи­пед такой, что AB = 16, AD = 3. Через се­ре­ди­ны ребер AA1 и BB1 про­ве­де­на плос­кость (см.рис.), со­став­ля­ю­щая угол 60° с плос­ко­стью ос­но­ва­ния ABCD. Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да этой плос­ко­стью.



28
Задание № 646
i

ABCDA1B1C1D1  — пря­мо­уголь­ный па­рал­ле­ле­пи­пед такой, что AB = 20, AD = 4. Через се­ре­ди­ны ребер AA1 и BB1 про­ве­де­на плос­кость (см.рис.), со­став­ля­ю­щая угол 60° с плос­ко­стью ос­но­ва­ния ABCD. Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да этой плос­ко­стью.



29

Через точку A вы­со­ты SO ко­ну­са про­ве­де­на плос­кость, па­рал­лель­ная ос­но­ва­нию. Опре­де­ли­те, во сколь­ко раз пло­щадь ос­но­ва­ния ко­ну­са боль­ше пло­ща­ди по­лу­чен­но­го се­че­ния, если SA : AO = 2 : 3.



30
Задание № 1074
i

Через точку A вы­со­ты SO ко­ну­са про­ве­де­на плос­кость, па­рал­лель­ная ос­но­ва­нию. Опре­де­ли­те, во сколь­ко раз пло­щадь ос­но­ва­ния ко­ну­са боль­ше пло­ща­ди по­лу­чен­но­го се­че­ния, если SA : AO = 4 : 7.



31
Задание № 1104
i

Через точку A вы­со­ты SO ко­ну­са про­ве­де­на плос­кость, па­рал­лель­ная ос­но­ва­нию. Опре­де­ли­те, во сколь­ко раз пло­щадь ос­но­ва­ния ко­ну­са боль­ше пло­ща­ди по­лу­чен­но­го се­че­ния, если SA : AO = 3 : 5.



32
Задание № 1313
i

Се­ку­щая плос­кость пе­ре­се­ка­ет сферу по окруж­но­сти, ра­ди­ус ко­то­рой равен 2. Если рас­сто­я­ние от цен­тра сферы до се­ку­щей плос­ко­сти равно 4, то пло­щадь сферы равна:



33
Задание № 1344
i

Се­ку­щая плос­кость пе­ре­се­ка­ет сферу по окруж­но­сти, ра­ди­ус ко­то­рой равен 3. Если рас­сто­я­ние от цен­тра сферы до се­ку­щей плос­ко­сти равно 6, то пло­щадь сферы равна:



34

В тет­ра­эд­ре SABC с реб­ром 24 точка P при­над­ле­жит SC так, что SC : PC = 2 : 1 и AS:AM = 2: 1, CN: BN =1:3. Най­ди­те пло­щадь се­че­ния тет­ра­эд­ра плос­ко­стью MNP.



35
Задание № 1171
i

В пра­виль­ной тре­уголь­ной приз­ме ребра ос­но­ва­ния равны 16, а вы­со­та равна 9. Най­ди­те пло­щадь се­че­ния приз­мы плос­ко­стью MNP, если CM:C_1M=1:2,PB:PB_1=1:2,AN:AC=1:4.



36
Задание № 1201
i

В пра­виль­ной тре­уголь­ной приз­ме ребра ос­но­ва­ния равны 16, а вы­со­та равна 9. Най­ди­те пло­щадь се­че­ния приз­мы плос­ко­стью MNP, если C_1M:B_1M=3:1,PB:BB_1=1:3,AN:NC=1:3.



37

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной пи­ра­ми­ды, если длина бис­сек­три­сы ее ос­но­ва­ния равна 4 ко­рень из 3 и плос­кий угол при вер­ши­не 2 арк­тан­генс дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби .


Ответ:

38
Задание № 925
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной пи­ра­ми­ды, если длина бис­сек­три­сы ее ос­но­ва­ния равна 4 ко­рень из 3 и плос­кий угол при вер­ши­не 2 арк­тан­генс дробь: чис­ли­тель: 6, зна­ме­на­тель: 7 конец дроби .


Ответ:

39
Задание № 955
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной пи­ра­ми­ды, если длина бис­сек­три­сы ее ос­но­ва­ния равна 3 ко­рень из 3 и плос­кий угол при вер­ши­не 2 арк­тан­генс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .


Ответ:

40
Задание № 985
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной пи­ра­ми­ды, если длина бис­сек­три­сы ее ос­но­ва­ния равна  дробь: чис­ли­тель: 9 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби и плос­кий угол при вер­ши­не 2 арк­тан­генс дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби .


Ответ:

41
Задание № 1015
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной пи­ра­ми­ды, если длина бис­сек­три­сы ее ос­но­ва­ния равна  дробь: чис­ли­тель: 3 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби и плос­кий угол при вер­ши­не 2 арк­тан­генс дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби .


Ответ:

42

В ос­но­ва­нии пи­ра­ми­ды лежит пря­мо­уголь­ный тре­уголь­ник, длина ги­по­те­ну­зы ко­то­ро­го равна 6, ост­рый угол равен 30°. Каж­дая бо­ко­вая грань пи­ра­ми­ды на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом, рав­ным  арк­ко­си­нус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 10 конец дроби . Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды.


Ответ:

43
Задание № 1354
i

В ос­но­ва­нии пи­ра­ми­ды лежит пря­мо­уголь­ный тре­уголь­ник, длина ги­по­те­ну­зы ко­то­ро­го равна 6, ост­рый угол равен 60°. Каж­дая бо­ко­вая грань пи­ра­ми­ды на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом, рав­ным arccos дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 14 конец дроби . Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды.


Ответ:

44

Най­ди­те пло­щадь пол­ной по­верх­но­сти пря­мой тре­уголь­ной приз­мы, опи­сан­ной около шара, если пло­щадь ос­но­ва­ния приз­мы равна 7,5.


Ответ:

45
Задание № 1084
i

Най­ди­те пло­щадь пол­ной по­верх­но­сти пря­мой тре­уголь­ной приз­мы, опи­сан­ной около шара, если пло­щадь ос­но­ва­ния приз­мы равна 11,5.


Ответ:

46
Задание № 1114
i

Най­ди­те пло­щадь пол­ной по­верх­но­сти пря­мой тре­уголь­ной приз­мы, опи­сан­ной около шара, если пло­щадь ос­но­ва­ния приз­мы равна 4,5.


Ответ:

47

Сфера про­хо­дит через все вер­ши­ны ниж­не­го ос­но­ва­ния пра­виль­ной че­ты­рех­уголь­ной приз­мы и ка­са­ет­ся ее верх­не­го ос­но­ва­ния. Най­ди­те пло­щадь сферы, если пло­щадь диа­го­наль­но­го се­че­ния приз­мы равна  дробь: чис­ли­тель: 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: Пи конец дроби , а вы­со­та приз­мы в два раза мень­ше ра­ди­у­са сферы.


Ответ:

48
Задание № 1712
i

Сфера про­хо­дит через все вер­ши­ны ниж­не­го ос­но­ва­ния пра­виль­ной че­ты­рех­уголь­ной приз­мы и ка­са­ет­ся ее верх­не­го ос­но­ва­ния. Най­ди­те пло­щадь сферы, если пло­щадь диа­го­наль­но­го се­че­ния приз­мы равна  дробь: чис­ли­тель: 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: Пи конец дроби , а вы­со­та приз­мы в два раза мень­ше ра­ди­у­са сферы.


Ответ:

49

Куб впи­сан в пра­виль­ную че­ты­рех­уголь­ную пи­ра­ми­ду так, что че­ты­ре его вер­ши­ны на­хо­дят­ся на бо­ко­вых реб­рах пи­ра­ми­ды, а че­ты­ре дру­гие вер­ши­ны  — на ее ос­но­ва­нии. Длина сто­ро­ны ос­но­ва­ния пи­ра­ми­ды равна 2, вы­со­та пи­ра­ми­ды  — 6. Най­ди­те пло­щадь S по­верх­но­сти куба. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 4S.


Ответ:

50
Задание № 688
i

Куб впи­сан в пра­виль­ную че­ты­рех­уголь­ную пи­ра­ми­ду так, что че­ты­ре его вер­ши­ны на­хо­дят­ся на бо­ко­вых реб­рах пи­ра­ми­ды, а че­ты­ре дру­гие вер­ши­ны  — на ее ос­но­ва­нии. Длина сто­ро­ны ос­но­ва­ния пи­ра­ми­ды равна 1, вы­со­та пи­ра­ми­ды  — 3. Най­ди­те пло­щадь S по­верх­но­сти куба. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 8S.


Ответ:

51
Задание № 718
i

Куб впи­сан в пра­виль­ную че­ты­рех­уголь­ную пи­ра­ми­ду так, что че­ты­ре его вер­ши­ны на­хо­дят­ся на бо­ко­вых реб­рах пи­ра­ми­ды, а че­ты­ре дру­гие вер­ши­ны  — на ее ос­но­ва­нии. Длина сто­ро­ны ос­но­ва­ния пи­ра­ми­ды равна 3, вы­со­та пи­ра­ми­ды  — 2. Най­ди­те пло­щадь S по­верх­но­сти куба. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 25S.


Ответ:

52
Задание № 748
i

Куб впи­сан в пра­виль­ную че­ты­рех­уголь­ную пи­ра­ми­ду так, что че­ты­ре его вер­ши­ны на­хо­дят­ся на бо­ко­вых реб­рах пи­ра­ми­ды, а че­ты­ре дру­гие вер­ши­ны  — на ее ос­но­ва­нии. Длина сто­ро­ны ос­но­ва­ния пи­ра­ми­ды равна 4, вы­со­та пи­ра­ми­ды  — 2. Най­ди­те пло­щадь S по­верх­но­сти куба. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 3S.


Ответ:

53
Задание № 778
i

Куб впи­сан в пра­виль­ную че­ты­рех­уголь­ную пи­ра­ми­ду так, что че­ты­ре его вер­ши­ны на­хо­дят­ся на бо­ко­вых реб­рах пи­ра­ми­ды, а че­ты­ре дру­гие вер­ши­ны  — на ее ос­но­ва­нии. Длина сто­ро­ны ос­но­ва­ния пи­ра­ми­ды равна 1, вы­со­та пи­ра­ми­ды  — 2. Най­ди­те пло­щадь S по­верх­но­сти куба. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 3S.


Ответ:

54
Задание № 30
i

ABCA1В1С1  — пра­виль­ная тре­уголь­ная приз­ма, у ко­то­рой сто­ро­на ос­но­ва­ния и бо­ко­вое ребро имеют длину 6. Через се­ре­ди­ны ребер АС и BB1 и вер­ши­ну A1 приз­мы про­ве­де­на се­ку­щая плос­кость. Най­ди­те пло­щадь се­че­ния приз­мы этой плос­ко­стью.


Ответ:

55

ABCDA1B1C1D1  — куб, длина ребра ко­то­ро­го равна 4 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та . Сфера про­хо­дит через его вер­ши­ны В и D1 и се­ре­ди­ны ребер BB1 и CC1. Най­ди­те пло­щадь сферы S, в ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: S, зна­ме­на­тель: Пи конец дроби .


Ответ:

56
Задание № 1648
i

Фи­гу­ра ABCDA1B1C1D1  — куб, длина ребра ко­то­ро­го равна 4 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та . Сфера про­хо­дит через его вер­ши­ны A и C1 и се­ре­ди­ны ребер AA1 и DD1. Най­ди­те пло­щадь сферы S и в ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: S, зна­ме­на­тель: Пи конец дроби .


Ответ:

57
Задание № 2264
i

Квад­рат, длина диа­го­на­ли ко­то­ро­го равна 8, лежит в плос­ко­сти α. Сфера ка­са­ет­ся плос­ко­сти α в точке пе­ре­се­че­ния диа­го­на­лей квад­ра­та. Най­ди­те пло­щадь сферы, если рас­сто­я­ние от цен­тра сферы до вер­ши­ны квад­ра­та равно 4 ко­рень из 2 .



58
Задание № 2278
i

Ци­линдр пе­ре­се­чен такой плос­ко­стью, па­рал­лель­ной оси ци­лин­дра, что в се­че­нии по­лу­чил­ся квад­рат пло­ща­дью 100. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: S, зна­ме­на­тель: Пи конец дроби , где S  — пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, если рас­сто­я­ние от оси ци­лин­дра до плос­ко­сти се­че­ния равно  ко­рень из: на­ча­ло ар­гу­мен­та: 39 конец ар­гу­мен­та .


Ответ:

59

Через вер­ши­ну Р ко­ну­са и хорду АВ его ос­но­ва­ния, стя­ги­ва­ю­щую дугу в 90°, про­ве­де­но се­че­ние. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та умно­жить на S, зна­ме­на­тель: Пи конец дроби , где S  — пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если пе­ри­метр этого се­че­ния равен  12 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та и  \angle PAB = 60 гра­ду­сов.


Ответ:

60

Через вер­ши­ну Р ко­ну­са и хорду АВ его ос­но­ва­ния, стя­ги­ва­ю­щую дугу в 90°, про­ве­де­но се­че­ние. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та умно­жить на S, зна­ме­на­тель: Пи конец дроби , где S  — пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, если пе­ри­метр этого се­че­ния равен  18 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та и  \angle PAB = 60 гра­ду­сов.


Ответ:

61
Задание № 2355
i

Квад­рат, длина диа­го­на­ли ко­то­ро­го равна 20, лежит в плос­ко­сти α. Сфера ка­са­ет­ся плос­ко­сти α в точке пе­ре­се­че­ния диа­го­на­лей квад­ра­та. Най­ди­те пло­щадь сферы, если рас­сто­я­ние от цен­тра сферы до вер­ши­ны квад­ра­та равно  10 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та .



62
Задание № 2370
i

Ци­линдр пе­ре­се­чен такой плос­ко­стью, па­рал­лель­ной оси ци­лин­дра, что в се­че­нии по­лу­чил­ся квад­рат пло­ща­дью 36. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: S, зна­ме­на­тель: Пи конец дроби , где S  — пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, если рас­сто­я­ние от оси ци­лин­дра до плос­ко­сти се­че­ния равно 2 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та .


Ответ:
Завершить работу, свериться с ответами, увидеть решения.